ارائه‌ی راهکار مناسب جهت ساخت مخازن ذخیره آب شرب
با استفاده از
مصالح زئوستنتیک و زئوممبرینج

تاریخ دریافت: 1394/4/1
تاریخ پذیرش مقاله: 94/5/12
نویسنده:

چکیده:
ازهمه‌ترین معایب مخازن بتنی می‌توان به عمر کوتاه در اثر خوردگی تدریجی فولاد، ترک خوردگی جداره و کف ماهی و نیز ترک خوردگی ناشی از شیشه‌های ناماسی خاک بسترهزینه و در این جهت ضمن جهت شرکت و با استفاده از مصالح زئوستنتیک و زئوممبرینج ارائه می‌گردد. ازجمله امتیازات این مصالح نسبت به بن، انعطاف پذیری، نفوذ‌پذیری کم، خودترمیمی، نصب سریع و آسان، حذف هزن‌های فلز بندی و مایلی مطابق با مقياس بسیار بزرگ، عمر زیاد و مقاومت در مقابل نهای مخازن خاک بسترهزینه می‌باشد. مهم‌ترین عامل جهت ایجاد مصالح فوق جذب آب توسط پنبه است که در این حالت بسترهزینه به صورت خبری محصول شده، بین حضیرهای بیلیمی به وجود می‌آید. در این مقاله چگونگی جذب آب و توزیع رطوبت در چند نمونه از پرددهای عایق GCL توسط روش‌های بیشتر و آزمایشگاهی بررسی می‌گردد. بررسی انجام شده نشان نمومانه از پرددهای عایق GCL در سطح دهندی متوسط گفتگویی آب رطوبت در پرده عایق GCL می‌باشد. نتایج آزمایشات نشان می‌دهد که جذب رطوبت توسط پرددهای عایق مورد مطالعه، به دو عامل زمان و نشانه صدایی می‌باشد. نتایج تحقیقات بنا بر نتایج گرفته با زئوممبرینج و GCLs مستقر در ناحیه مقابل با سر مصالح بتن می‌باشد.

کلمات کلیدی: مخازن، GCLs، زئوممبرینج، تراوش
مقدمه:

مطالعات آزمایشگاهی و سعی برای ارزیابی عملکرد GCLS به عنوان عایق در برای فنود آب و شیراب‌های صنعتی و خانگی انجام گرفته است. از طریق تحقیقات انجام گرفته حاکی از این مطلب است که عملکرد هیدرولیکی GCLS بستگی به توزیع بتنویت و جرم واحد سطح مصالح دارد. انداده‌گیری جرم واحد سطح GCL ذخیره شده است که طی آن اغلب ASTM D 5993 GCL ژنکامپوزیت در استاندارد 07 طراحی شده است. برای GCL که بتنویت‌های دانه‌ای و یا پودری در بین ژنکستان‌های قرار گرفته است، بتنویت نقش اساسی و حیاتی به عنوان عایق هیدرولیکی دارد. فاکتورهای تأثیرگذار در نفوذ سیال به GCL به طور خلاصه به دو بخش طبقه‌بندی می‌گردد: 1- مشخصات واسطه‌ها، حجم برگ گاز باعث می‌گردد که مابین بیشتری از درون پرده عایق عبور کند- 2- مشخصات سیال، ویژگی‌ها و ویسکوزیته و بسیاریت با نیاز به جریان سیال را کاهش می‌دهد. اصطلاح که جنس و پانزده گی سیال و اجزا خاک از فاکتورهای تأثیرگذار بر ویسکوزیته می‌باشد. یکی از نقاط ضعف بتنویت آن است که بعد از فرآیندهدراتاتوپی مقاومت برشی آن کاهش می‌یابد که این عامل باعث می‌شود که آماده تمرکز تنش بر روی GCLS مشود که منجر به کاهش موضعی ضخامت بتنویت و در نتیجه گردید. این حاکی از این مطلب است که جرم واحد سیال بتنویت گردد، عواملی که باعث ایجاد تمرکز تنش و در نتیجه کاهش ضخامت در بتنویت می‌باشند، شامل وجود سیال در خاک بستر و چین خوردگی آسیب پذیری در زمین‌برین می‌باشد.
هدايت هيدرولیکی:

دارسی در سال ۱۸۵۶ میلادی حجم جریان عبوری از داخل خاک ریزدانهی اشباع شده در هدهای مختلف آب با انواع سیالات، که در شکل شماره ۱ انشاب داده شده است را به آورد. حجم جریان عبوری بستگی به طول و سطح نمودن خواهد داشت که با افزایش سطح و کاهش طول نمودن افزایش می‌یابد. در شکل شماره ۱ mortgage هدايت هیدرولیکی برای انواع مختلف خاک ذکر گردیده است.

<table>
<thead>
<tr>
<th>شاخص</th>
<th>واحد</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نسبت تخلخل برای خاک‌های ماسه ای عموماً ۱/۴، ۱/۸، ۱/۱۶ می‌باشد. از طرفی ۶ برای خاک‌های ریزدانه یک بزرگتر از ۱ و در بعضی موارد ۲، ۴، ۸ می‌باشد. خاک‌های رسی دارای حجم بسیار کوچک حفره‌های منفرد می‌باشند؛ بنابراین آب بر خلاف خاک‌های ماسه‌ای آزادانه نمی‌تواند کند که این باعث هدايت هیدرولیکی بایین خاک‌های رسی می‌گردد. شکل شماره ۲ سرعت نفوذ آب از درون محیط تخلخل را نشان می‌دهد. فضای حفره‌های کوچک توزیع سرعت را محدود می‌کند.

![شکل ۱ آبشیز هیدرولیکی](عکس)

![شکل ۲ توزیع سرعت نفوذ آب در محیط‌های مختلف](عکس)
با توجه به سطح مؤثر ذرات رس، زمانی که آنها به صورت منفی شارژ می‌گردد، به عبارتی مولکول‌های مابعد به صورت بسیار قوی جذب سطوح رس خواهند شد. نتیجه اینکه هیاهایی تشکیل می‌گردد که در آنها مولکول‌های مابعد های مابعد به صورت بسیار قوی جذب سطوح رس خواهند شد که به دنبال ترتیب و نیاز منفی ضخامت‌ها ایجاد گردد. بنابراین با توجه به هیدرولوکی GCLS و سطح پایین تری از هیدرولوکی GCLS روشی آپ خلاص بستگی به محدودیت نشان داده که در پرسشنامه‌های سطح که تجربه داده شده بود، هیدرولوکی در متغیر اشناع و اشناع افزایش یافته است.

هدايت هیدرولوکی غیر اشناع:

هدايت هیدرولوکی اشناع زمانی اتفاق می‌افتد که خطرها به طور کامل از آب و یا حمام نفوذی بر شده است. فرض بر این است که اغلب GCLS در معرض جریان سیال قرار دارند. اشناع می‌گردد. اگر چه ممکن است به عنوان عایق هیدرولوکی مورد استفاده قرار می‌گیرد غیراشناع باشنند. عموماً هدايت هیدرولوکی تابع از درجه اشناع می‌باشد که در شماره 31 نشان داده شده است. این فرآیند دلیل است که نرخ جریان بستگی به حجم اشعال شده توسط آب دارد. درجه اشناع پایین‌تر هدايت هیدرولوکی باینی را به دنبال دارد. بنابراین ارزیابی عملکرد برخی از مصالح سنتی که به عنوان مانع هیدرولوکی به کار می‌رفتند، به طور مثل: پوشش رس متراکم شده، با استفاده از هدايت هیدرولوکی اشناع که تحت شرایط غیراشناع قرار دارد یک طراحی محافظه‌کارانه است. در GCLS هدايت هیدرولوکی پایین، باعث تورم بسته می‌گردد. مقدار نسبتاً بزرگ نفوذ مشاهده می‌شود برای مرحله ابتدایی آزمایش هدايت هیدرولوکی تا زمان اشناع شدن بسته توسط آب و وقوع تورم کافی ادامه دارد.

پدیده نفوذ پندری در پرده‌های عایق GCLs:

مصالح نازکی هستند و ضخامت آنها بر حسب مقدار تورم و همچنین موقعیت کاربرد آن تنها باعث هیدرولوکی GCLS منجر می‌شود. هنگامی که سطح نازک بادش، به تغییر ضخامت در نرخ جریان پیباد است. شکل شماره 44 مقطع عرضی را برای محاسبه نرخ جریان نشان می‌دهد. فرض می‌کنیم GCLS اشناع باشد و آب به U مقدار نسبتاً بزرگ نفوذ مشاهده می‌شود برای مرحله ابتدایی آزمایش هیدرولوکی تا زمان اشناع شدن بسته توسط آب و وقوع تورم کافی ادامه دارد.

\[V = K \times \frac{H + L}{L} \]

برای روشین شدن مستقل GCLS ضخامت‌های مختلف مورد بررسی قرار می‌گیرد.

4
محاسبات بیانگر این واقعیت می‌باشد که افزایش ضخامت GCL به مقدار 10% باعث می‌شود که نرخ جریان تقیباً 8/7% کاهش یابد. بنابراین زمانی که به عنوان مانع هیدرولیکی مورد استفاده قرار می‌گیرد، انتخاب یک ضخامت مطمئن بسیار ضروریست.

نفوذپذیری ذاتی:

زمانی که انواع مختلف سیالات نظیر آب ناخالص و یا شیره‌های صنعتی و خانگی جهت نفوذ به منظور ارزیابی مورد بررسی قرار می‌گیرند، مشخصات سیال نفوذی می‌باشند. مورد توجه قرار گرفته‌اند. در میان مشخصات مايعات و بیکاریت فاکتور بسیار مهم است. افزایش رفتار هیدرولیکی از نوع بانج شده 11 برای نفوذ اتانول جهت ارزیابی سازگاری شیمیایی را انجام داده است. افزایش قابل توجهی در هیدرولیکی برای محلول اتانول 25/75 و 100/100 مشاهده گردید، در صورتی که هدایت هیدرولیکی محلول اتانول با دیدگاه خلوص 25/75 و 50/75 به صورت بسیار ناخنی بیشتر نسبت به آب خالص می‌باشد. در شکل شماره 15 مقایسه‌های هیدرولیکی آب خالص و آب ترکیب شده با اتانول نشان داده شده است.
در شکل شماره ۴ مقدار نفوذ‌پذیری GCL پانچ شده، تحت نفوذ آب ناخالص ترکیب شده با اتانول نشان داده شده است. این کاهش در هیدرولیکی برای محلول با غلظت اتانول ۲۵٪ و ۵۰٪، به علت تغییرات ویسکوزیتی بر روی نفوذ‌پذیری می‌باشد. زمانی که آزمایش‌های هیدرولیکی تحت اثر آب ترکیب شده با محلول‌های شیمیایی قرار گیرد، اندرکنش بین رس و مانند توسه‌سازی به سه ملاس‌های در نظر گرفته تغییرات ویسکوزیتی، نمی‌توان مورد ارزیابی قرار گرفت. همان‌طور که در شکل شماره ۴ ملاحظه می‌کنید مقدار نفوذ‌پذیری ذاتی برای محلول اتانول با غلظت ۲۵٪ و ۵۰٪ تقریباً برای آب خالص می‌باشد. این مسئله نشانگر آن است که غلظت اتانول کمتر از ۵۰٪ هیچ تأثیری بر روی ساختار حفره‌های بتوانست در نخواهد داشت.

آزمایش‌های هیدرولیکی

اساساً اندوزه‌گیری هیدرولیکی GCL به مسیر مشکلی است. واقعیت این مسئله بدن دلایل است که سطح هیدرولیکی بیشتر از باقی آن است، بنابراین آزمایش‌های هیدرولیکی باز می‌شود توجه خاص و مهارت می‌باشد. گرایش‌های هیدرولیکی بالا، باعث می‌شود که اختلاف قابل توجهی بین سطح، نشان می‌دهد بالا و پایین نمونه به وجود آید. مسئله مهمی که در آزمایش‌های هیدرولیکی حساسیت‌های فیزیکی و شیمیایی را است. فاکتورهای تأثیر گذار بر مقدار هیدرولیکی عبارتند از:

۱- نوع نفوذ‌سنجی که به کار گرفته می‌شود.
۲- تنش مؤثر
۳- گرایش‌های هیدرولیکی
۴- اندازه نمونه

مسئولیت نخواهد بود در آزمایش‌های هیدرولیکی انتخاب نوع مناسب نفوذ‌سنجی می‌باشد که انواع آن شامل:

۱- نفوذ‌سنج با دیواره صلب
۲- نفوذ‌سنج با دیواره انعطاف‌پذیر
۳- سلول‌های تحکیمی می‌باشد
سلولهای تحقیقی بندیده برای مصالح با هدایت هیدرولیکی پایین مانند GCL مورد استفاده قرار می‌گیرد. این اهمیت که در نظر گرفته شده است، به این معناست که این نوع مواد نیز می‌تواند تأثیرات جدیدی در مهندسی زمین‌سازی و تصفیه آب را داشته باشد.

فاز بعدی از این تحقیق شامل نفوذ سنج، انتقال انرژی و انرژی الکترونیک است. در این فاز، نفوذ سنج با دبی‌های مختلف انجام می‌شود و اثرات آن بر روی هدایت هیدرولیکی و حساسیت ماده به آن بررسی می‌شود.

در نهایت، نتایج این تحقیق می‌تواند به عنوان یک ابزار قوی در تحقیقات مهندسی زمین‌سازی و تصفیه آب بکار رود.

در شکل شماره 8، نمودار شماتیکی از این نفوذ سنج نشان داده شده است. نکته بسیار مهم آن است که در این آزمایش بر خلاف نمونه‌های خاک رسمی مطابق با استاندارد 3/3 و کیلو پاسکال و محلول نمک با گلظت 3% تا 20 می‌باشد.
موارد و روش‌ها

متغیرهای کلیدی برای اندوکسیون هیدرولیکی نمونه‌های GCL عبارتند از:

1- مرتباً کردن و تهیه نمونه GCL
2- تعیین ضخامت نمونه
3- انتخاب نشان‌های مؤثر
4- انتخاب گرادیان هیدرولیکی
5- انتخاب مایع مرطوب کننده اولیه

در شکل شماره ۴۹ از دست رفتن بینویست در راستای لبه نمونه به جلوگیری از هدر رفتن بینویست قبل از بیردن GCL به بینویست آب اعمال می‌گردد. بین دنیا ترتب که درجه یا نشان‌های بر روی زننکستی که برای نشان دادن اینکه چه مقدار از سطح می‌باشد، بریده شود، علائم گذازی می‌گردد؟ سپس مقدار کمی آب در محیط مدرج اعمال می‌گردد. این روش بعد از بیردن بینویست مرطوب اولیه جدا نمی‌گردد. بعلاوه گروه فیبرهای بریده شده، ناپدید بدن صورت که در طرف چپ شکل شماره ۴۹ مشاهده می‌شود، وجود داشته باشد. بیدن دلیل که باعث ایجاد جریان‌های توده و می‌گردد. علت اصلی هیدرولیکی پایین برده‌های عایق، تشکیل لایه می‌ضعاف و تورم اسمزی می‌باشد. تأثیرات لایه‌ی می‌ضعاف در ذرات رسی اعمال می‌گردد، چنین که فاز اسمزی تورم‌هایی که در خصوصیات بارز مونت موربیونت می‌باشد.

لایه‌ی می‌ضعاف معمولاً توسط مدل Stern-Guoy بهبود می‌گردد. بر طبق این مدل آب دو قطعی جهت دار و Stern-layer کاتیون‌های هیدراته شده ثابت، مستقیماً بر می‌سازد سطح رس رش لایه‌ی نازکی به نام

جمهوری، قرار می‌گیرند. در جنبه‌ای این لایه، کاتیون‌های هیدراته‌های لایه پراکنده، جذب سطح رس شده و مستقر می‌گردد. تمرکز کاتیون‌ها در لایه‌ی می‌ضعاف، نمای پتانسیل الکتریکی منفی سطح رس می‌باشد که دفعی از سطح رس کاهش می‌یابد.

به‌طور ای‌یاً بستگی به مرکز ثقل لایه پراکنده دارد و بیدن ترتیب مشخص می‌گردد:

\[
\lambda = \sqrt{\frac{F}{\sqrt{T}}} \]

که در آن \(F\) ثابت دی الکتریک آب خالص؛ که اشاره به فنوزدایر نسبی دارد، \(F\) فنوزدایری در محیط خلاء، تبین عامل طبیعی، \(T\) حرارت مطلق، \(\eta\) فشار و تغییر نسبی خلأ. کاتیون‌ها لایه‌ی غلظت الکترولیت و \(\lambda\) ضخامت لایه می‌ضعاف می‌باشد. مدل Stern-Guoy و تابی دی الکتریک بر ضخامت لایه‌ی می‌ضعاف و در نتیجه هیدرولیکی و ترکیب آن بر مقدار تورم بینویست تأثیرگذار هستند. این مشاهده بیدن دلیل است که مولکول‌های آب در لایه‌ی می‌ضعاف، چندگاه بسیار قوی با سطح رس دارند، و در نتیجه آنها دار به وجود آوردن فضا برای فنوز آب مشارکت نمی‌کند. تأثیرات مولکول‌های
آب جذبی بر هیدرولیکی در شکل ۱۰ مشخص شده است، بدين ترتيب كه لايه مولکولهای ضخيمتر آب سطحی، فضای مؤثر كمتری يون آب و در نتیجه هیدرولیکی پایين را ايجاد مي كند. در مقابلهي مياشف كه در سطح خارجي رس تشکيل مي گردد، تورم اسمزي در فاز اسموتیك كه در آن مولکولهای آب به سطح داخلی رس جذب مي گردد. فاز اسمزي زماني اتفاق مي افتد كه معاوضه در سطح داخلی شمار كاتيونهاي نک ظرفيني مانند سدیم انجام گيرد. در اين حالت لايه داخلی ممكن است مقدار زيادي از لايه مولکولهای آب را حفظ كند. تعداد لايهای مولکولهای آب سطحي در تعادل با غلتائ كاتیونها در سطح آب مي باشد.

براي اساس زماني كه حجم آب شامل غلتائ كم كاتيونهاي نک ظرفيني باشد و كاتيونهاي نک ظرفيني محل معاوضه را اشغال كرده باشند، قسمت يزگي از كلي آب جذب مي گردد. بنابراين مقدار اندكی آب برای چريان موجود مي باشد كه در اين حالت حجم تورم يورسي بالا و هیدرولیکي سيبار پايين مي باشد. اين موقعیت معمولي زمانی مشاهده مي گردد كه بستني سدیم هیدراته گردد و نفوذ زيدي به وسيله آب دوينه انجام گيرد، بعلاوه در توسعتي لايهي مياشف و تورم اسمزي، فشار محدود نيز بر هيدرولیکي تاثيرگذار است.

فشار محدود بالا باعث به وجود آمدن نسبت فضاي خالي كمتری مي گردد و در نتیجه هیدرولیکي پايين را باعث مي شود. اگر چه تأثیرات فشار محدود در مقايسه با لايهي مياشف و تورم اسمزي سيبار پايين است، نکته مهمي كه مي باشيي مورد توجه قرار گيرد، عملكرد هيدرولیکي GCLs همبوشاني شده مي باشد؛ كه يك مسئله اجرائي بوده وسيار حائز اهميت است.
بررسی عملکرد هیدرولیکی پرده ها هموشانی شده که به هنگام اجرای آن سرو کار داریم بسیار حائز اهمیت می باشد. در شکل 11 مقایسه جریان آب دو پرده دست نخورده و هموشانی شده نشان داده شده است. در GCLs که بتنیت در سطح هموشانی قرار دارد، حرکت آب در آن محدود می گردد که باعث موردن شدن بتنیت در آن قسمت می گردد.

برای تعیین هدایت هیدرولیکی پرده های هموشانی شده، از جعبه جریان استفاده می شود که در آن می توان سطح نرمال فشار را در موقعیت های مختلف ایجاد کرده نشست نامناسب، تأثیرات مضری بر عملکرد هیدرولیکی پرده های هموشانی شده می گذارد که بحث در مورد آن در حیطه این مقاله نمی گنجد. برای GCLs هموشانی شده می گذارد که بحث در مورد آن در حیطه این مقاله نمی گنجد. برای همراه زنده می‌کند. این مسئله بین در دلیل است که صفحه ی دست نخورده GCLs به صورت عمیق توسط هیدرولیکی ایفای تأثیر می‌کند. این مسئله بین در دلیل است که صفحه ی دست نخورده GCLs به صورت عمیق توسط هیدرولیکی ایفای تأثیر می‌کند. این مسئله بین در دلیل است که صفحه ی دست نخورده GCLs به صورت عمیق توسط هیدرولیکی ایفای تأثیر می‌کند.
آماده‌سازی نمونه‌ها در آزمایشگاه
در مطالعات آزمایشگاهی پرده‌ای حاصل در یک دوره زمانی معین، در یک مخزن پر از آب نگهداری می‌گردد.
در پایان مدت غوطه‌وری، به‌هدف جلوگیری از تبخیر و همچنین یک‌نواخت، شدند رطوبت در نمونه‌ها، نمونه‌ها دریک غشای لاستیکی به مدت یک هفته در شرایط استاندارد آزمایشگاه نگهداری می‌شوند. نگهداری نمونه‌ها به دو روش انجام می‌گردد:

1- در این روش هر نمونه به ابعاد 30 سانتی‌متر بین دو صفحه فلزی و تحت یک پوشش لاستیکی به صورت ساندویچ قرار می‌گیرد که در این حالت نمونه به مدت زمان ۵ دقیقه در آب غوطه‌وری می‌گردد، سپس تحت نش قائم ۱۰ کیلو پاسیکال در شرایط استاندارد نگهداری شده است. در این حالت اختلاف رطوبت حداکثر ۶/۴ درصد نمونه است. این اختلاف در رطوبت می‌تواند پذیرش باشد.

2- روش دیگر در مرطوب‌سازی نمونه‌ها آن است که بدون وارد کردن تنش عمودی، نمونه‌ها به مدت یک هفته پس از سیری شدن زمان غوطه‌وری در شرایط استاندارد آزمایشگاهی نگهداری می‌گردند که در این حالت حداکثر رطوبت ۱۰/۱% و حداقل ۹۶/۹% می‌باشد که اختلاف حداقل و حداکثر معادل ۲/۵/۵ است.

با توجه به مطالعات آزمایشگاهی که در مورد خصوصیات ذاتی پرده‌ای عایق و کاربردی آن انجام شده، استفاده از GCL به همراه ژنومبرین و ژنومرید و یک لایه نازک بتن به ضخامت تقریبی ۱۰ سانتی‌متر، روش مناسب و اقتصادی در ساخت مخازن آب شرب می‌باشد. نمایی از راهکار پیشنهادی در شکل‌شماره ۱۳۴ مشاهده می‌شود؛ از طرفی لازم به ذکر است که در محل درز اجراپی‌برده س عایق GCL از پودر بنوتنی استفاده می‌گردد. همانطور که در شکل اجزاء کف مخزن نشان داده شده است، به جای گلره‌های فولادی که در مقابل خوردگی بسیار ضعیف هستند از مصالح جایگزین ژنومرید استفاده شده است.

این مصالح از جنس پلی‌ایتان و پلی‌استر می‌باشند و مقاومت بالایی در مقابل خوردگی و کشش دارند. ژنومرید بدیل ساختار شیکه‌ای باعث پایداری پوشش کف مخزن می‌گردد و این پدیده ترک و لغزش را پوشش کف مخزن می‌گردد و این پدیده ترک و لغزش را کاهش داده و باعث دوام و کارایی مخزن آب شرب می‌شود.
نتایج

از جمله مشکلات مخازن بتنی آب شرب می‌توان به مواردی از جمله: هدر رفت نسبتاً زیاد آب از کف و جداره و تبخیر آب از سطح مخزن در فصول گرم و همچنین نشست‌های غیریکنواخت خاک بستر مخزن اشاره کرد. با توجه به ورود مصالح جدید از قبل ذووسنتیا ها در علوم مهندسی زئوکسانتین ضرورت استفاده از این مصالح جهت ساخت مخازن آب شرب، ضروری به نظر می‌رسد. یکی از اجزای مهم در طراحی مخازن آب شرب طراحی سیستم عایق‌بندی کف مخزن می‌باشد. در این مقاله ضمن آشنا شدن با مصالح ذووسنتیک، کاربرد این مصالح در ساختار سیستم عایق‌بندی کف مخزن بررسی شده است. البته لازم به ذکر است که مطالعاتی در خصوص ریز‌ساختار، پدیده‌کشش و شیمی سطح رس توسط نویسندگان این مقاله انجام شده است، که از جمله یافته‌های عمده جابه‌جایی است و در هنگام اجرای این سیستم در نظر گرفته شود. نتایج نشان می‌دهند که جذب رطوبت در پره‌های عایق به دو عامل زمان و مکان و تنش اعمالی سربار بستگی دارد. اگر نصب ذووکستایل‌های فوقانی و تحتانی پرده عایق GCL به درستی صورت گیرد و زمان غوطه‌وری مناسب برای نمونه‌ها در نظر گرفته شود، این طراحی راندمان سیار بالایی، نسبت به سایر مصالح ستی خواهد داشت. پوشش کف پیشنهادی در این مقاله دارای امپیازات بسیار زیادی نسبت به پوشش‌های ستی دارد، که از جمله‌ای این امپیازات می‌توان به نشست بسیار کم، انعطاف‌پذیری نسبتاً زیاد و اجرای سريع و عمر نسبتاً زیاد اشاره نمود؛ از طرفی جهت اجرای این سیستم باستی به موارد زیر توجه کرده تراکم و تخلیه نشست خاک بستر، دقت در کارگذاری ذووکستینک و ذووکستایل‌ها، مهار و گیرداری جانبی ذووممبرین و ذووسنتیک. لازم به ذکر است که در خصوص نشست خاک بستر و راه‌کارها که در آن، مطالعاتی در دست بررسی است. سیستم GCL در زمان بهره‌برداری تحت فشار ناشی از آب مخزن متراکم شده و با کاشش نفوذ‌پذیری دارای انعطاف‌پذیری بیشتری بیشتری می‌گردد. این خاصیت باعث همبستگی بیشتر در مرز لایه‌های سیستم عایق‌بندی می‌گردد؛ از طرفی به کار بردن لایه‌های محافظت در ناحیه تحتانی ذووکستایل ماسه با دانه‌بندی یک‌تایی به همراه کمی پنونیت برای پشت ذرات ماسه سیار مفيد خواهد بود.